

The first SSR1-ez is completed!

26 april 2007

G. Lanfranco - TD - SRF Development

The first SSR1-ez

PROTON DRIVER - SSR Single Spoke Resonator

Outline

- The cavity has been successfully leak checked!
- The warm resonant frequency is **324.73** MHz @ 21°C!
- $Q_0 = 6205!$

Dimensional Check - Before Weld

Dimensional Check - After weld

Dimensional and Frequency measurements - updated

Target F = 324.535 MHz

Measure N°	L _o [mm]	F [MHz]	∆L [mm]	ΔL [mm] expected	ΔF [kHz]	ΔF/mm/ side [kHz] (**)	Qo
initial	266,22	328,606	-	-	-	-	3670
#1	264,4	327,961	1,82	2	645	708.8	4362
#2	260,60	326,625	3,8	4	1336	703.2	4490
#3	258,80	326,0275	1,80	2	597.5	663.9	5412
before weld	256,13	325,0475	2,67	0,8+1,7 (*)	980	734.1	4025
After weld (***)		325.132					5855
inelastic def.(***)		324.728					6205

(*) a correction was necessary to bring the two iris gaps to be comparable (**) theoretical $\Delta F = 735 \text{ kHz/mm/side}$

- It is not clear why the frequency did not go down despite the 1.4 mm weld shrinkage (expected 324.53 MHz***)
- G.Corniani suggests it may induced by a balancing effect due to Magnetic volume reduction. The magnetic ΔV is much smaller than the electric but $\varepsilon_o E_o{}^2$ and $\mu_o B_o{}^2$ may have different weight (we need Ivan's FEA)
- Maybe measurement before weld was wrong?

*** $325.04 \text{ MHz} - 1.4 \text{ mm} \times 734 \text{ KHz} / 2 \text{ mm} = 324.53 \text{ MHz}$

Leak check

• No leak greater than 6.7 x10-11 mbar l s-1

What is left before shipping

- Measurements shown have been done before inelastic tuning and leak check. Zanon will redo the measurement by end of this week.
- It is not clear what is the spring back behavior of the end wall during inelastic tuning and what is the amount of force applied to achieve the ~400KHz frequency shift.
- The welded RF surface finish is very good.

 They will anyway send us a boroscope picture of the area that to their judgement is the worst.

Considerations

- Even if the final warm frequency is close to target F (thanks to ease of inelastic tuning), frequency shifts need to be better understood and predicted
- Hence it is advisable to weld the end wall in two operations with a tuning check in between